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Abstract
Background: Bipolar disorder, particularly in children, is characterized by rapid cycling and switching,
making circadian clock genes plausible molecular underpinnings for bipolar disorder. We previously
reported work establishing mice lacking the clock gene D-box binding protein (DBP) as a stress-reactive
genetic animal model of bipolar disorder. Microarray studies revealed that expression of two closely
related clock genes, RAR-related orphan receptors alpha (RORA) and beta (RORB), was altered in these
mice. These retinoid-related receptors are involved in a number of pathways including neurogenesis, stress
response, and modulation of circadian rhythms. Here we report association studies between bipolar
disorder and single-nucleotide polymorphisms (SNPs) in RORA and RORB.

Methods: We genotyped 355 RORA and RORB SNPs in a pediatric cohort consisting of a family-based
sample of 153 trios and an independent, non-overlapping case-control sample of 152 cases and 140
controls. Bipolar disorder in children and adolescents is characterized by increased stress reactivity and
frequent episodes of shorter duration; thus our cohort provides a potentially enriched sample for
identifying genes involved in cycling and switching.

Results: We report that four intronic RORB SNPs showed positive associations with the pediatric bipolar
phenotype that survived Bonferroni correction for multiple comparisons in the case-control sample.
Three RORB haplotype blocks implicating an additional 11 SNPs were also associated with the disease in
the case-control sample. However, these significant associations were not replicated in the sample of trios.
There was no evidence for association between pediatric bipolar disorder and any RORA SNPs or
haplotype blocks after multiple-test correction. In addition, we found no strong evidence for association
between the age-at-onset of bipolar disorder with any RORA or RORB SNPs.

Conclusion: Our findings suggest that clock genes in general and RORB in particular may be important
candidates for further investigation in the search for the molecular basis of bipolar disorder.
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Background
Bipolar disorder is often characterized by circadian
rhythm abnormalities, including decreased need for sleep
and rapid cycling and switching. This appears to be partic-
ularly true among pediatric bipolar patients, where
cycling and switching is more rapid than among adult
bipolar patients [1-3]. Decreased sleep has even been
noted as one of the earliest symptoms discriminating chil-
dren with bipolar disorder from those with attention def-
icit hyperactivity disorder (ADHD) [4]. For these reasons,
circadian rhythm abnormalities in general, and circadian
clock genes in particular, have been proposed as possible
mechanistic underpinnings for bipolar disorder, particu-
larly for the phenomena of cycling and switching [5-14].
Associations between seasonal affective disorder (SAD), a
variant of bipolar disorder, and polymorphisms in the
clock genes PER2, ARNTL/BMAL1, and NPAS2 have been
reported [15,16].

We previously described the identification of clock gene
D-box binding protein (DBP) as a potential candidate
gene for bipolar disorder [6] using a Bayesian-like
approach called Convergent Functional Genomics. In
additional work where we used an expanded Convergent
Functional Genomics approach in a mouse pharmacoge-
nomic model for bipolar disorder, we identified a series of
other clock genes (ARNTL/BMAL1, CRY2, CSNK1D, and
CCR4/nocturnin) as potential bipolar candidate genes
[17]. Two subsequent reports have shown some sugges-
tive association for one of these genes, ARNTL/BMAL1, in
human bipolar samples [18,19]. ARNTL/BMAL1 is
upstream of DBP in the circadian clock intracellular
molecular machinery, driving the transcription of DBP
[20,21].

To further assess the role of DBP in bipolar and related
disorders, we have conducted and recently reported
behavioral and gene expression studies in mice with a
constitutive homozygous deletion of DBP (DBP KO mice)
[14]. The studies in DBP KO mice revealed two other,
closely related, clock genes whose expression levels were
also altered: RAR-related orphan receptors alpha (RORA)
and beta (RORB). Both RORA and RORB expression was
increased in the amygdala and decreased in the pre-frontal
cortex in DBP KO non-stressed, depressed-like mice. The
ROR proteins, retinoid-related transcription factors, are in
the steroid hormone receptor superfamily and play regu-
latory roles in neurogenesis, bone metabolism, and circa-
dian rhythms (reviewed in [22]). RORA expression is
widespread and appears to oscillate rhythmically in some
tissues [23]. One of its roles involves activating transcrip-
tion of the clock gene ARNTL/BMAL1 and regulating its
circadian oscillation [24]. Staggerer mutant mice, which
lack RORA activity, exhibit an enhanced response to novel
environmental stress, mediated through corticosterone
circadian rhythm abnormalities [25]. Of note, corticoster-

one abnormalities are prominent clinical findings in
human affective disorder patients [26]. RORB expression
is more limited than RORA and is highest in the eye, pin-
eal gland, and brain, particularly in the primary sensory
cortices (layer IV of the somatosensory cortex) and the
suprachiasmatic nuclei of the hypothalamus (reviewed in
[22,27]). Like RORA, RORB expression is known to
change as a function of circadian rhythm in some tissues,
and RORB -/- mice exhibit circadian rhythm abnormali-
ties.

Here we report association studies for RORA and RORB in
a pediatric bipolar disorder cohort. Bipolar disorder in
children and adolescents is characterized by more rapid
cycling and switching compared to adult bipolar disorder
[1-3], possibly due to ongoing developmental processes
and increased plasticity. Given our hypothesis that clock
genes may underlie cycling and switching and the fact that
ROR proteins play a role in development and neurogene-
sis, we reasoned that a pediatric bipolar cohort may repre-
sent an enriched pool in which to test for genetic
association with illness. We therefore genotyped 312
RORA and 43 RORB single-nucleotide polymorphisms
(SNPs) in two pediatric bipolar sub-cohorts: a family-
based sample of 153 trios (each trio consisting of an
affected proband and both parents) and a case-control
sample of 152 cases (all independent from the family-
based samples) and 140 independent controls.

Methods
Sample Identification
Subjects were ascertained from families recruited for
genetic studies of pediatric psychopathology at the Clini-
cal and Research Program in Pediatric Psychopharmacol-
ogy and Adult ADHD at Massachusetts General Hospital
[28-31]. All study procedures were reviewed and approved
by the subcommittee for human subjects of our institu-
tion. All subjects' parents or guardians signed written
informed consent forms and children older than 7 years
of age signed written assent forms.

Potential bipolar disorder I (BP-I) probands were ascer-
tained from our clinical service, referrals from local clini-
cians, or self-referral in response to internal hospital
advertisements. Subjects' parents were administered a
phone screen reviewing symptoms of DSM-IV BP-I and, if
criteria were met, subjects were scheduled for a face-to-
face structured diagnostic interview (described below).
There were two sources of controls. The first group of con-
trols was ascertained from outpatients referred for routine
physical examinations to pediatric medical clinics at each
setting identified from their computerized records as not
having ADHD and who were found not to have BP-I on
structured diagnostic interview. The second group of con-
trols was selected from the Healthy Volunteer Specimen
Bank (HVS) at the Harvard Medical School-Partners
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Healthcare Center for Genetics and Genomics. Healthy
volunteers had also signed informed consent specifically
allowing future DNA analyses. A thorough medical his-
tory and physical exam was performed to exclude all
active diseases and current medication use and to obtain
information such as lifetime tobacco use (yes or no). Con-
trols were excluded if they had either ADHD or BPD.
Other psychiatric disorders were not used as exclusion cri-
teria.

Diagnostic Procedures
All affected probands in the current analysis were diag-
nosed with bipolar I disorder according to DSM-IV crite-
ria. The DSM-IV requires subjects to meet criterion A for a
distinct period of extreme and persistently elevated,
expansive, or irritable mood lasting at least one week, plus
criterion B, manifested by three (four if the mood is irrita-
ble only) of seven symptoms during the period of mood
disturbance. Also recorded was the onset of first episode,
the number of episodes, offset of last episode, and total
duration of illness. Psychiatric assessments of child family
members (younger than 18 years) were made with the
KSADSE (Epidemiologic Version) [32] and assessments of
adult family members were made with the Structured
Clinical Interview for DSM-IV [33]. Diagnoses were based
on independent interviews with mothers and direct inter-
views with the children older than 12 years of age. Data
were combined such that endorsement by either reporter
resulted in a positive diagnosis. Interviews were con-
ducted by extensively trained and supervised psychome-
tricians with undergraduate degrees in psychology. This
training involved several weeks of classroom instruction
of interview mechanics, diagnostic criteria, and coding
algorithms. They also observed interviews by experienced
raters and clinicians and were observed while conducting
interviews during the final training period. A committee
of three psychiatrists, each board-certified in both child
and adult psychiatry, resolved all diagnostic uncertainties.
The committee members were blind to the subjects' ascer-
tainment group, ascertainment site, and data collected
from family members.

Probands were selected for analysis if the age-at-onset of
bipolar disorder was 18 years or younger. The sample for
family-based association analysis consisted of 153
affected probands (age (mean ± S.D.): 17.5 ± 11.6 years;
BP-I onset: 7.7 ± 4.9 years) and both parents (153 trios);
the sample for case-control association analysis consisted
of 152 independent, non-overlapping cases (age: 20.3 ±
12.1 years; BP-I onset: 9.1 ± 5.0 years) and 140 controls
(age: 42.9 ± 10.3 years). Thus the combined samples com-
prised 305 BP-I probands. Within our sample, 97.5% (N
= 429) of individuals in trios, 98.0% (N = 147) of cases
and 89.4% (N = 118) of controls were Caucasian.

SNP Tagging and Genotyping
SNP genotype information for the CEPH population
(Utah residents of northern and western European ances-
try) was downloaded from the Phase II HapMap data
(release #20) for regions surrounding each gene (750.7 kb
for RORA and 208.1 kb for RORB). We used the Tagger
program as implemented in Haploview http://
www.broad.mit.edu/mpg/haploview/[34] to select pair-
wise tag-SNPs with minor allele frequencies (MAF) = 0.05
and an r2 threshold of 0.8. In total, 332 tag-SNPs from
RORA (99% of alleles captured; mean r2 = 0.959) and 44
tag-SNPs from RORB (98% of alleles captured; mean r2 =
0.959) were chosen for genotyping. Primers were
designed using MassARRAY's Assay Design software
(Bruker-Sequenom, USA) and were purchased from Inte-
grated DNA Technologies (USA). Genotyping of samples
was performed as single-base extension reactions (iPLEX)
using the MassARRAY mass spectrometry system as previ-
ously described [35]. A list of the genotyped SNPs and the
assay primers used can be found in Additional file 1.

Data Analysis
A number of quality control measures were implemented
to ensure accuracy of the data collected. Genotypes from
intra- and inter-plate controls were compared for identity,
and negative test controls were confirmed to have no gen-
otypes called. In addition, assays that failed in over 10%
of the samples (14 SNPs) were excluded and samples that
failed in over 10% of the assays (33 samples) were
excluded. The genotyping rate in the remaining individu-
als was 99.38%. Families with greater than 5% Mendelian
errors (4 families) and SNPs with greater than 10% Men-
delian errors (1 SNP) were excluded, and genotypes caus-
ing remaining Mendelian errors were set to missing. SNPs
out of Hardy-Weinberg Equilibrium (P < 0.001; 6 SNPs)
were excluded from analysis. These measures resulted in a
final set of 312 RORA SNPs (93% of alleles captured;
mean r2 = 0.959), and 43 RORB SNPs (98% of alleles cap-
tured; mean r2 = 0.959).

Family-based transmission disequilibrium tests (TDT)
and case-control association tests were conducted inde-
pendently on the two sample sets using the program
PLINK http://pngu.mgh.harvard.edu/~purcell/plink/[36].
Bonferroni correction for multiple testing was imple-
mented based on the number of SNPs analyzed per gene.
The critical P-value for a positive association was therefore
1.6 × 10-4 for SNPs from RORA and 1.2 × 10-3 for SNPs
from RORB. In addition to these separate analyses for the
case-control and the family-based samples, a combined
odds ratio for the two sample sets was determined via the
method described in Kazeem and Farrall [37]. Haplotype
analyses were performed for both sample sets using the
Confidence Intervals algorithm in Haploview [34,38].
Haplotype block associations were considered significant
Page 3 of 8
(page number not for citation purposes)

http://www.broad.mit.edu/mpg/haploview/
http://www.broad.mit.edu/mpg/haploview/
http://pngu.mgh.harvard.edu/~purcell/plink/


BMC Psychiatry 2009, 9:70 http://www.biomedcentral.com/1471-244X/9/70
with a two-tailed permutation-based P-value < 0.05 after
1000 permutations.

Association with genotyped SNPs and age-at-onset (AAO)
of bipolar disorder was analyzed by performing a quanti-
tative trait analysis using the option qfam in PLINK. This
option takes into account family structure information, so
we were able to include data from the family-based sam-
ple and the case-control sample in the same analysis. The
AAO phenotype was set to missing for all controls. Results
were considered significant with a permutation-based P-
value < 0.05 after 1000 permutations.

Results
Several SNPs reached the nominal significance level of P <
0.05 in either the family-based sample or the case-control
sample: 18 RORA SNPs and 8 RORB SNPs in the family-
based sample, and 13 RORA SNPs and 16 RORB SNPs in
the case-control sample [see Additional file 2]. However,
after Bonferroni correction for multiple testing, no RORA
SNPs and 4 RORB SNPs remained significant. These RORB
SNPs were rs1157358 (P = 4.5 × 10-5) and rs7022435 (P =
1.1 × 10-6) in intron 1, rs3750420 (P = 7.9 × 10-6) in
intron 2, and rs3903529 (P = 8.2 × 10-5) in intron 4 (Fig-
ure 1). All of these SNPs were significant only in the case-
control sample and exhibited odds ratios in the opposite
direction in the family-based sample (Table 1). No SNP
exhibited a combined family-based/case-control P-value <
0.05. Of the four SNPs significant in the case-control sam-
ple, all but one exhibited Hardy-Weinberg Equilibrium
(HWE) P-values >0.05 in both sample sets; the exception
is rs3750420, for which the family-based HWE P-value
was 0.037 (HWE P = 0.100 in case-control sample). The
genotyping call rates for these four SNPs were between
97.66% and 100% in both cases and controls, and there
were no significant differences in call rates between cases
and controls (Fisher's exact test, all P-values > 0.05). Three
RORB haplotype blocks in the case-control sample exhib-
ited permuted P-values < 0.05 (blocks 5 and 6, P < 0.001;
block 8, P = 0.002) (Figure 1 and Table 2). No RORB hap-
lotype blocks in the family-based sample and no RORA
haplotype blocks in the family-based or case-control sam-
ples remained significant after permutation.

While our failure to replicate the association between
RORB SNPs and bipolar disorder in the trios sample could
be due to the fact that case-control designs exhibit higher
power than family-based designs, it also raises the possi-
bility that our results were due to population stratification
within the case-control sample, particularly as there was a
higher percentage of non-Caucasians among the controls
(10.6%) than among the cases (2.0%). To investigate this
possibility, we reran the SNP association analysis on the
case-control data after removing all non-Caucasian indi-
viduals (and those with missing information) from the
dataset, leaving a sample of 147 cases and 118 controls.

All four RORB SNPs that were significant in the original
sample remained significant after Bonferroni correction
on the filtered Caucasian-only sample. An additional
RORB SNP, rs7032677, was also significant after correc-
tion in this limited sample (P = 1.99 × 10-4 in this sample,
P = 0.0021 in the original sample).

For quantitative trait analysis with age-at-onset, 8 RORA
and 2 RORB SNPs exhibited significant P-values after per-
mutation [lowest P-values per gene: rs7175393 (P =
0.025) in RORA and rs12001830 (P = 0.037) in RORB; see
Additional file 3]. The two significant SNPs from RORB
from the AAO analysis, however, were not among the
SNPs associated with the bipolar disorder "affected" phe-
notype used in the primary analysis reported above.

Discussion
We identified a potential association between bipolar dis-
order and the retinoid-related receptor RORB in a pediat-
ric bipolar disorder cohort. Four RORB SNPs and three
haplotype blocks demonstrated positive associations in
the case-control sample after Bonferroni correction or per-
mutation. RORB was initially chosen for investigation due
to its altered expression level in DBP knock-out mice (an
animal model of bipolar disorder [14]) and due to the
potential role of circadian clock genes in bipolar disorder.

The RORB gene encodes two isoforms, RORB1 and
RORB2, which differ only in their N-terminal domains
[39]. These alternative forms have different first exons and
are believed to be produced as a result of transcription
from alternative promoters. In RORB1, nine amino acids
precede the first cysteine of the DNA binding domain,
while in RORB2 there are twenty residues before this
cysteine. The two forms of the protein exhibit differential
expression patterns: RORB2 is found exclusively in the ret-
ina and pineal gland, and RORB1 is found mainly in the
cerebral cortex (particularly in layer IV and, to a lesser
extent, layer V), thalamus, and hypothalamus and is
expressed only at very low levels in the retina and pineal
gland [39,40]. RORB2 mRNA expression oscillates dra-
matically with circadian rhythms, peaking during the
hours of darkness, while RORB1 expression fluctuates
only mildly [39]. The DNA binding specificities and activ-
ities of the isoforms also differ. In rat, this results in
RORB2 demonstrating increased activity in non-neuronal
cells, though RORB1 and RORB2 perform equally well in
neuroblastoma cells [39]. Taken together, these findings
indicate that RORB1 is likely responsible for functions
relating to the processing of sensory input while RORB2 is
an integral member of the circadian clock machinery.

The four intronic SNPs of RORB we found to be associated
with bipolar disorder are all downstream of the first exon in
both RORB1 and RORB2 transcripts. If certain sequence var-
iants of RORB (these SNPs or others in linkage disequilib-
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Genomic Organization of RORB with Association ResultsFigure 1
Genomic Organization of RORB with Association Results. The genomic location and organization of RORB are shown, 
with exons represented by vertical purple bars. All 43 analyzed RORB SNPs are shown and their positions are indicated. The 
four SNPs with significant associations to bipolar disorder in the case-control sample are highlighted in red. The haplotype 
block structure in the case-control sample as defined by the Confidence Intervals algorithm [38] in Haploview [34] is illus-
trated, with the linkage disequilibrium (LD) structure shown below. The two haplotype blocks with two-tailed permutation-
based P-values < 0.001 are highlighted in red, and the block with P < 0.01 is highlighted in orange. Image created using Locus-
View http://www.broad.mit.edu/mpg/locusview/[51].
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rium with them) do indeed represent susceptibility variants
for bipolar disorder, it is possible they do so by altering the
expression of one or both of the RORB isoforms. One of the
haplotype blocks exhibiting a positive association (block 5
in Figure 1 and Table 2) spans the region containing the
RORB2 exon 1, from approximately 55.1 kb upstream to
approximately 5.7 kb downstream of RORB2 exon 1. It is
possible, therefore, that the positive signal in this haplotype
is due to sequence variation in the RORB2 promoter that
affects the location, timing, or magnitude of RORB2 expres-
sion, leading to increased risk for bipolar disorder.

Our findings should be considered in the context of
important methodological limitations. Although our
patient sample was relatively small, its focus on pediatric
patients made it a potentially enriched pool in which to
search for genes involved in rapid cycling and switching,
such as clock genes. The significant association of four
RORB SNPs and three RORB haplotype blocks with bipo-
lar disorder in the case-control sample indicates that this
may indeed be the case. However, the TDT odds ratios for
the associated SNPs were not consistent with the highly
significant case-control results. This raises the possibility
that the case-control results could be false positives due to
population stratification or that we had insufficient power
in our replication sample.

Though we still observed significant association after lim-
iting the sample to Caucasians only, we cannot rule out
other sources of stratification, such as distinct ancestry.
Alternatively, these findings could be the result of associ-
ated alleles of each marker on different haplotypes with
the actual risk-conferring variant(s) in the two samples.

Despite these limitations, our results indicate that circa-
dian clock genes in general and RORB in particular may be
important candidates for genes involved in bipolar disor-
der. Of note, both RORB and RORA have nominally sug-
gestive signals in three recently reported genome-wide
association studies for bipolar disorder [41-43] that do
not survive correction for multiple comparisons. This
would be expected if our pediatric cohort does indeed rep-
resent an enriched sample in which to test for association
with circadian clock genes that may be involved in cycling
and switching. The nominally associated SNPs in RORB
from these studies, however, do not overlap with those
SNPs found to be associated in our study [see Additional
file 4]. It is therefore necessary to verify these association
results in other independent samples and to continue to
study the relationship between RORB, other clock genes,
and bipolar disorder.

Table 1: RORB SNPs with Significant Association to Bipolar Disorder.

SNP Region Minor 
Allele

Major 
Allele

Case-
Control 

MAF

Case 
MAF

Control 
MAF

Case-
Control 

OR

Case-
Control 
P-value

TDT MAF 
(Founders)

T U TDT 
OR

TDT 
P-value

Combined 
OR

Combined 
P-value

rs1157358 Intron 1 T C 0.137 0.218 0.091 2.802 4.5E-05 0.167 29 38 0.763 0.272 1.162 0.401
rs7022435 Intron 1 A G 0.176 0.310 0.135 2.881 1.1E-06 0.203 34 51 0.667 0.065 1.150 0.373
rs3750420 Intron 2 T C 0.237 0.375 0.201 2.388 7.9E-06 0.304 65 66 0.985 0.930 1.176 0.214
rs3903529 Intron 4 A T 0.229 0.357 0.205 2.154 8.2E-05 0.247 34 55 0.618 0.026 1.094 0.537

MAF = Minor Allele Frequency
OR = Odds Ratio of the minor allele
T = Number of transmitted minor alleles
U = Number of untransmitted minor alleles

Table 2: RORB Haplotype Blocks with Significant Association to Bipolar Disorder.

Block SNPs Haplotype Overall Frequency Case Frequency Control Frequency P-value Permuted P-value

Block 5 rs17684881 CGCCCAG 0.16 0.218 0.091 5.08E-05 < 0.001
rs17612218
rs11144020
rs17612778
rs17612874
rs17691363
rs10869430

Block 6 rs7022435 AAA 0.224 0.305 0.13 8.17E-07 < 0.001
rs17691614
rs7032677

Block 8 rs11144033 GAT 0.289 0.359 0.207 8.92E-05 0.002
rs3903529
rs968357
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Finally, it is important to note that RORB, RORA, and DBP
were identified by us recently as possible genes involved
in schizophrenia using a pharmacogenomic mouse model
and CFG approach [44]. Overall, our findings are thus
consistent with a model of heterogeneity, overlap, and
interdependence of major psychiatric disorders
[14,45,46]. Particularly intriguing from a translational
standpoint is the possibility that the localized expression
of RORB in layer IV somatosensory cortex [47] may con-
tribute to integration of external and internal stimuli that
have a bearing on response to stress, mood reactivity, and
cognitive constructs in bipolar disorder pathophysiology
[48-50].

Conclusion
Our findings suggest that clock genes in general and RORB
in particular may be important candidates for further
investigation in the search for the molecular basis of bipo-
lar disorder. These results are supported by our current
understanding of the expression, localization, and possi-
ble roles of RORB in the brain and are also consistent with
data from animal models of bipolar disorder.
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